TYPE CONSTANTS AND (q, 2)-SUMMING NORMS DEFINED BY n VECTORS

BY HERMANN KÖNIG

ABSTRACT

For $q \ge 2$, the (q, 2)-summing norm of an operator of rank n can be computed, up to a constant c_q , by an appropriate choice of at most n vectors. A corresponding statement is true for the Gaussian type and cotype constants of n-dimensional spaces.

A linear operator $T: X \to Y$ between Banach spaces is said to be (q, 2)-absolutely summing, where $q \ge 2$, if there is M > 0 such that for any finite sequence $(x_i)_{i=1}^n \subseteq X$

$$\left(\sum_{i=1}^{n} \|Tx_i\|^{q}\right)^{1/q} \leq M \sup_{\|x\|_{X^{\bullet}} \leq 1} \left(\sum_{i=1}^{n} |\langle x', x_i \rangle|^{2}\right)^{1/2}.$$

The infimum over all possible values of M is the (q, 2)-summing norm, denoted by $\pi_{q,2}(T)$. If only sequences $(x_i)_{i=1}^n$ of fixed length n are considered, the infimum over all M is denoted by $\pi_{q,2}^{(n)}(T)$. $\Pi_{q,2}(X, Y)$ stands for all (q, 2)-summing operators from X into Y.

Let g_i be a sequence of independent normalized Gaussian random variables on a probability space (Ω, P) . Given a Banach space X, we let, for any $n \in \mathbb{N}$ and $1 \le p \le 2 \le q \le \infty$, $K^{(p,n)}(X)$ and $K_{(q,n)}(X)$ be the smallest constants for which

(1)
$$K_{(q,n)}(X)^{-1} \left(\sum_{i=1}^{n} \|x_i\|^q \right)^{1/q} \leq \left(\int_{\Omega} \left\| \sum_{i=1}^{n} g_i(\omega) x_i \right\|^2 dP(\omega) \right)^{1/2} \\ \leq K^{(p,n)}(X) \left(\sum_{i=1}^{n} \|x_i\|^p \right)^{1/p}$$

for every choice of $(x_i)_{i=1}^n \subseteq X$. If the left (respectively the right) inequality in (1) holds for any $n \in \mathbb{N}$, X is of Gaussian cotype q (respectively Gaussian type p); the corresponding constants are denoted by $K_{(q)}(X)$ $(K^{(p)}(X))$.

Received January 24, 1980

Clearly $\pi_{q,2}^{(n)}(T) \leq \pi_{q,2}(T)$, $K_{(q,n)}(X) \leq K_{(q)}(X)$ and $K^{(p,n)}(X) \leq K^{(p)}(X)$ for any $p \leq 2 \leq q$, $n \in \mathbb{N}$, T and X. On the other hand, Tomczak-Jaergermann [6] showed that the (2,2)-summing norm of any rank n operator T essentially can be calculated by n vectors, i.e.

$$\pi_{2,2}(T) \leq 2\pi_{2,2}^{(n)}(T)$$

and similarly for the (co)type 2 constants of n-dimensional spaces X,

$$K^{(2)}(X) \le 2K^{(2,n)}(X), \qquad K_{(2)}(X) \le 2K_{(2,n)}(X).$$

The aim of this note is to derive corresponding inequalities for $p \le 2$ and $q \ge 2$. We prove the

THEOREM. For any q > 2, there is a constant c_q such that for any operator $T: X \to Y$ of rank n

$$\pi_{q,2}(T) \leq c_q \pi_{q,2}^{(n)}(T).$$

There is an absolute constant c such that $c_q \le c/(q-2)$.

Whereas the proof of [6] does not work for q > 2, the proof of the theorem given here does not apply in the case q = 2. It is unknown whether c_q can be chosen to be bounded as q tends to 2. By the method of [6], theorem 1 implies

COROLLARY 1. Let 1 , <math>p' = p/(p-1). Let X be a n-dimensional space. Then

$$K^{(p,n)}(X) \leq K^{(p)}(X) \leq c_{p'} K^{(p,n)}(X),$$

$$K_{(q,n)}(X) \leq K_{(q)}(X) \leq c_q K_{(q,n)}(X).$$

The proof of the theorem uses three lemmas. We need some notation first. The approximation numbers of an operator $T: X \to Y$ are given by

$$\alpha_{j}(T) := \inf\{ ||T - T_{j}|| | T_{j} : X \to Y \text{ of rank } < j \}, \quad j = 1, 2, \dots.$$

For any $0 < q \le \infty$, we let

$$S_q(X, Y) := \left\{ T : X \to Y \mid \sigma_q(T) := \left(\sum_{j=1}^{\infty} \alpha_j(T)^q \right)^{1/q} < \infty \right\},$$

with $S_{\infty}(X, Y)$:= all continuous linear maps, and

$$S_{2,1}(X, Y) := \left\{ T : X \to Y \mid \sigma_{2,1}(T) := \sum_{j=1}^{\infty} \alpha_j(T) j^{-1/2} < \infty \right\};$$

 σ_q is a quasinorm on $S_q(X, Y)$. $S_{2,1}(X, Y)$ corresponds to the Lorentz sequence space

$$l_{2,1} := \left\{ (\xi_j)_{j=1}^{\infty} \, \middle| \, \xi_j \in \mathbb{K}, \, \|\xi\|_{2,1} := \sum_{j=1}^{\infty} \xi_j^* j^{-1/2} < \infty \right\}.$$

Here ξ_i^* is the (decreasing) rearrangement of ξ_i .

LEMMA 1. For any $T: l_2^n \to X$ and $q \ge 2$, $\sigma_q(T) \le \pi_{q,2}^{(n)}(T)$.

PROOF. This is a modified form of a lemma of Lewis [4]. We define inductively an orthonormal basis $(e_i)_{i=1}^n$ of l_2^n with

$$\alpha_j(T) \leq ||Te_j||.$$

For j = 1, choose $e_1 \in l_2^n$ of norm 1 such that $\alpha_j(T) = ||T|| = ||Te_1||$. If j < n orthonormal vectors e_1, \dots, e_j with (2) have been constructed, let $Y_j := [e_1, \dots, e_j]$ and $P_j : l_2^n \to Y_j \subseteq l_2^n$ be the orthonormal projection. Since rank $P_j = j$,

$$\alpha_{j+1}(T) \leq ||T - TP_j|| = ||T||_{Y^{\frac{1}{2}}}||.$$

Hence there is $e_{j+1} \in Y_j^{\perp}$ with $||e_{j+1}|| = 1$ such that $\alpha_{j+1}(T) \le ||Te_{j+1}||$, the vector for j+1. Since rank $T \le n$, one has $\alpha_k(T) = 0$ for k > n. Hence by (2)

$$\sigma_q(T) = \left(\sum_{j=1}^n \alpha_j(T)^q\right)^{1/q} \le \left(\sum_{j=1}^n \|Te_j\|^q\right)^{1/q} \le \pi_{q,2}^{(n)}(T).$$

LEMMA 2. For any X and Y, $S_{2,1}(X, Y) \subseteq \Pi_{2,2}(X, Y)$.

PROOF. Take any operator $T \in S_{2,1}(X, Y)$. Choose $D_i: X \to Y$ of rank $D_i < 2^i$ such that $||T - D_i|| \le 2\alpha_{2^i}(T)$, $j = 0, 1, \dots (D_0 = 0)$. Let $T_i = D_{i+1} - D_i$. Then $T = \sum_{j=0}^{\infty} T_j$, $||T_j|| \le 4\alpha_{2^j}(T)$ and k_i : = rank $T_i < 2^{j+2}$. By Garling-Gordon [1], the 2-summing norm of the identity map I_i on the k_i -dimensional space T_iX is $\pi_{2,2}(I_i) = \sqrt{k_i}$. Hence

$$\pi_{2,2}\left(\sum_{j=0}^{N} T_{j}\right) \leq \sum_{j=0}^{N} \pi_{2,2}(T_{j}) \leq \sum_{j=0}^{N} \|T_{j}\| \pi_{2,2}(I_{j})$$

$$\leq 2 \sum_{j=0}^{N} 2^{j/2} \|T_{j}\| \leq 16 \sum_{j=0}^{N} 2^{j/2-1} \alpha_{2^{j}}(T)$$

which, using the monotonicity of the approximation numbers, is

$$\leq 16 \sum_{k=1}^{\infty} k^{-1/2} \alpha_k(T) = 16 \sigma_{2,1}(T),$$

which is bounded independent of N. Thus T is 2-summing and $\pi_{2,2}(T) \le 16\sigma_{2,1}(T)$.

Let Z_1 and Z_2 be (quasi)normed spaces with $Z_1 \subseteq Z_2$. Recall that the K-functional for (Z_1, Z_2) is given by

$$K(t, z; Z_1, Z_2) := \inf\{\|z_1\|_{Z_1} + t \|z_2\|_{Z_2} | z = z_1 + z_2, z_1 \in Z_1, z_2 \in Z_2\}$$

for $t \in \mathbb{R}^+$ and $z \in \mathbb{Z}_2$. For $0 < q \le \infty$, $0 < \theta < 1$, the real interpolation space

$$(Z_1, Z_2)_{\theta,q} := \left\{ z \in Z_2 \middle| \|z\|_{\theta,q} = \left(\int_0^\infty (K(t, z; Z_1, Z_2) t^{-\theta})^q \frac{dt}{t} \right)^{1/q} < \infty \right\}$$

is again a quasinormed space, with quasinorm $\|\cdot\|_{\theta,q}$.

LEMMA 3. (a) There are absolute constants c_1, c_2 such that for any $T: X \to Y$ and $t \in \mathbb{R}^+$

$$c_1K(t, T; S_{2,1}(X, Y), S_{\infty}(X, Y)) \leq K(t, (\alpha_j(T))_{j=1}^{\infty}; l_{2,1}, l_{\infty})$$

$$\leq c_2K(t, T; S_{2,1}(X, Y), S_{\infty}(X, Y)).$$

(b) For any X, Y and
$$2 < q < \infty$$
 with $1/q = (1 - \theta)/2$

$$S_q(X, Y) = (S_{2,1}(X, Y), S_{\infty}(X, Y))_{\theta,q},$$

$$\Pi_{q,2}(X, Y) \subseteq (\Pi_{2,2}(X, Y), \Pi_{\infty,2}(X, Y))_{\theta,q}$$

and with absolute constants c_1, c_2, c_3

(3)
$$c_1 \sigma_q(T) \leq ||T||_{(S_{2,1},S_{\infty})_{\theta,q}} \leq c_2/(q-2)\sigma_q(T),$$

(4)
$$||T||_{(\Pi_{2,2},\Pi_{\infty,2})_{\theta,q}} \leq c_3 \pi_{q,2}(T).$$

Here $\pi_{\infty,2}(X, Y) = S_{\infty}(X, Y)$ denotes all continuous linear maps.

PROOF. Let $0 < p_1 < p_2 \le \infty$ and X and Y be Banach spaces. By proposition 1 of [3]

(5)
$$K(t, T; S_{p_i}(X, Y), S_{p_i}(X, Y)) \sim K(t, (\alpha_i(T))_{i=1}^{\infty}; l_{p_i}, l_{p_i}).$$

Here \sim indicates equivalence up to constants depending only on p_1 and p_2 which are bounded as $p_2 \to \infty$. The proof of (5) given in [3] by mistake only works in the case $p_2 = \infty$ (which we need). However, the case $p_2 < \infty$ follows easily from theorem 2.1 and remark 2.1 of T. Holmstedt [2] and the equivalence for $p_2 = \infty$. It is well-known [2] that $(l_1, l_\infty)_{1/2,1} = l_{2,1}$. Thus using (5) for $p_1 = 1$, $p_2 = \infty$ we get

$$(S_1(X, Y), S_{\infty}(X, Y))_{1/2,1} = S_{2,1}(X, Y).$$

A twofold application of theorem 2.1 of [2] now yields

$$K(t, T; S_{2,1}, S_{\infty}) \sim \int_0^{t^2} s^{-1/2} K(s, T; S_1, S_{\infty}) ds/s$$

$$\sim \int_0^{t^2} s^{-1/2} K(s, (\alpha_j(T))_{j=1}^{\infty}; l_1, l_{\infty}) ds/s$$

$$\sim K(t, (\alpha_j(T))_{j=1}^{\infty}; l_{2,1}, l_{\infty}).$$

Hence by definition of the interpolation spaces

$$||T||_{(S_{2,1},S_{\infty})_{\theta,q}} \sim ||(\alpha_j(T))_{j=1}^{\infty}||_{(I_{2,1},I_{\infty})_{\theta,q}} \sim ||(\alpha_j(T))_{j=1}^{\infty}||_{I_q} = \sigma_q(T)$$

for q > 2, $1/q = (1 - \theta)/2$, using $l_q = (l_{2,1}, l_{\infty})_{\theta,q}$. The dependence of the constants in (3) on q follows from these estimates and theorem 3.1 of [2].

Finally (4) follows easily from $l_q = (l_2, l_\infty)_{\theta,q}$, cf. [3].

PROOF OF THE THEOREM. Let $S: X \to Y$ be of rank n. It is a consequence of

$$\pi_{q,2}(S) = \sup \{ \pi_{q,2}(SA) \mid A : l_2 \to X \text{ of } ||A|| \le 1 \},$$

that it suffices to prove Theorem 1 for maps $T: l_2^n \to X$. Let q > 2 and $1/q = (1 - \theta)/2$. By Lemmas 2 and 3,

$$S_{q}(l_{2}, X) = (S_{2,1}(l_{2}, X), S_{\infty}(l_{2}, X))_{\theta, q}$$

$$\subseteq (\Pi_{2,2}(l_{2}, X), \Pi_{\infty, 2}(l_{2}, X))_{\theta, q}$$

$$\subseteq \Pi_{q, 2}(l_{2}, X)$$

with (quasi)norm inequality $\pi_{q,2}(R) \le c_q \sigma_q(R)$ for any map $R: l_2 \to X$ and $c_q \le c/(q-2)$. Thus by Lemma 1

$$\pi_{q,2}(T) \le c_q \sigma_q(T) \le c_q \pi_{q,2}^{(n)}(T).$$

Note that Lemma 1 and (6) actually yield:

COROLLARY 2. For any $2 < q < \infty$ and any Banach space X

$$\Pi_{q,2}(l_2,X) = S_q(l_2,X).$$

Clearly, this is false for q = 2 and the reason why the proof of the theorem given does not work for q = 2.

PROOF OF COROLLARY 1. The following characterization of the Gaussian cotype and type constants for 1 was noted by Tomczak-Jaegermann [6], [7]:

$$K_{(q,n)}(X) = \sup \{ \pi_{q,2}^{(n)}(T) \mid T : l_2^n \to X \text{ with } l(T) \le 1 \},$$

$$K^{(p,n)}(X) = \sup \{ l(S) \mid S : l_2^n \to X \text{ with } (\pi_{p',2}^{(n)})^*(S^*) \le 1 \}.$$

Here $(\pi_{p',2}^{(n)})^*$ denotes the adjoint ideal norm and l the ideal norm

$$l(T) = \left(\int_{\Omega} \left\| \sum_{i=1}^{n} g_i(t) T e_i \right\|^2 dP(t) \right)^{1/2}.$$

Similar statements hold for $n = \infty$. These facts and Theorem 1 as well as its adjoint form imply Corollary 1.

By the Pietsch factorization theorem, any map $T: l_2^n \to X$ can be factored as T = SR, $S: l_2^n \to X$, $R: l_2^n \to l_2^n$ such that $\sigma_2(R) \| S \| = \pi_2(R) \| S \| = \pi_2(T)$. This factorization is one of the main steps in the proof of $\pi_2(T) \le 2\pi_2^{(n)}(T)$ in [6]. It is the reason why the proof of [6] does not generalize to $\pi_{q,2}$, since a corresponding factorization (in)equality $\sigma_q(R) \| S \| = \pi_{q,2}(R) \| S \| \le c\pi_{q,2}(T)$ is false in general, although only by a logarithmic factor. The best possible result concerning this problem is the

PROPOSITION. (a) For any $2 < q < \infty$, there is $c_q > 0$ such that for any n and any rank n operator $T: l_2^n \to X$ there is a factorization T = SR, $S: l_2^n \to X$, $R: l_2^n \to l_2^n$ with

$$\sigma_q(R) ||S|| \le c_q (\ln(n+1))^{1/2} \pi_{q,2}(T).$$

(b) There are operators $T_n: l_2^n \to l_1$ such that for any factorization $T_n = S_n R_n$, $S_n: l_2^n \to l_1$, $R_n: l_2^n \to l_2^n$ one has

$$\sigma_q(R_n) ||S_n|| \ge c_q (\ln(n+1))^{1/2} \pi_{q,2}(T_n).$$

Here c_q depends only on q, $2 < q < \infty$.

PROOF. (a) Let N be such that $2^{N-1} \le n < 2^N$ and choose again maps $D_j: l_2^n \to X$ of rank $D_j < 2^j$ such that $D_0 = 0$, $D_N = T$ and $||T - D_j|| \le 2\alpha_{2^j}(T)$. Let $T_j = D_j - D_{j-1}$ for $j = 1, \dots, N$. Then $T = \sum_{j=1}^N T_j$ with $t_j := \text{rank } T_j < 2^{j+1}$ and, as in Lemma 2, one gets

(7)
$$\left(\sum_{j=1}^{N} 2^{j} \| T_{j} \|^{q} \right)^{1/q} \leq c_{q} \sigma_{q}(T) \leq c_{q} \pi_{q,2}(T)$$

using Lemma 1. Let P_i denote the orthogonal projection onto the $(t_i$ -dimensional) space $l_2^n \bigcirc \text{Ker } T_i = l_2^i$. Taking the l_2 -sum of these spaces, we define

$$R: l_2^n \to l_2^N(l_2^t) = : (l_2^t \oplus \cdots \oplus l_2^t)_2$$

by $Rx = (\|T_i\|P_jx)_{j=1}^N$. Let $S: l_2^N(l_2^i) \to X$ be given by $S(\xi_i)_{j=1}^N = \sum_{j=1}^N T_i(\xi_j/\|T_j\|)$. Hence

$$SRx = \sum_{j=1}^{N} T_{j}P_{j}x = \sum_{j=1}^{N} T_{j}x = Tx,$$

SR is a factorization of T. Clearly $||S|| \le N^{1/2} \le c(\ln(n+1))^{1/2}$. To estimate $\sigma_q(R)$, note that $\sum_{j=1}^k (\operatorname{rank} P_j) < 2^{k+2}$ for $k = 1, \dots, N$. Hence

$$\alpha_{2^{k+2}}(R) \leq \sup_{\|\mathbf{x}\| \leq 1} \left(\sum_{i > k} \|T_i\|^2 \|P_i \mathbf{x}\|^2 \right)^{1/2} \leq \left(\sum_{i > k} \|T_i\|^2 \right)^{1/2}.$$

Using the monotonicity of the approximation numbers, we get

$$\sigma_{q}(R) = \left(\sum_{j=1}^{n} \alpha_{j}(R)^{q}\right)^{1/q} \leq c_{1} \left(\sum_{k=1}^{N} 2^{k} \alpha_{2^{k}}(R)^{q}\right)^{1/q}$$
$$\leq c_{2} \left(\sum_{k=1}^{N} 2^{k} \left(\sum_{j>k} \|T_{j}\|^{2}\right)^{q/2}\right)^{1/q}.$$

By a lemma of Pietsch [5], this is up to a constant

$$\leq c_3 \left(\sum_{j=1}^N 2^j \| T_j \|^q \right)^{1/q}$$

 $\leq c_4 \sigma_q(T) \leq d_q \pi_{q,2}(T),$

using (7), where the constants (may) depend only on q. Thus

$$\sigma_q(R) ||S|| \le c (\ln(n+1))^{1/2} \pi_{q,2}(T).$$

(b) To find operators T which do not factor well through $S_q(l_2)$, consider diagonal maps $D_{\sigma}: l_2^n \to l_1^n$, $(x_i)_{i=1}^n \mapsto (\sigma_i x_i)_{i=1}^n$. Assume $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$. To calculate the $\pi_{q,2}$ -norm of D_{σ} , we use

$$\alpha_j(D_{\sigma}) \leq \left(\sum_{k=j}^n \sigma_j^2\right)^{1/2}$$
 for $j = 1, \dots, n$;

here in fact equality holds. Hence by Corollary 2

$$\pi_{q,2}(D_{\sigma}) \leq c_q \sigma_q(D_{\sigma}) = c_q \left(\sum_{i=1}^n \left(\sum_{k=i}^n \sigma_k^2 \right)^{q/2} \right)^{1/q}.$$

The last norm, however, is equivalent to the norm $\|\cdot\|_{s,q}$ in the Lorentz sequence space $l_{s,q}$, 1/s = 1/q + 1/2, that is

(8)
$$\pi_{q,2}(D_{\sigma}) \leq d_q \|\sigma\|_{s,q} = : d_q \left(\sum_{j=1}^n \sigma_j^q j^{q/2} \right)^{1/q}$$

To see the equivalence observe that by the lemma of [5] and the monotonicity of the σ_i 's one has the equivalences (for $n = 2^N$)

$$\begin{split} \left(\sum_{j=1}^{n} \left(\sum_{k=j}^{n} \sigma_{k}^{2}\right)^{q/2}\right)^{1/q} &\sim \left(\sum_{i=1}^{N} 2^{i} \left(\sum_{k=2^{i}}^{2^{N}} \sigma_{k}^{2}\right)^{q/2}\right)^{1/q} \\ &\sim \left(\sum_{i=1}^{N} 2^{i} \left(\sum_{l=i}^{N} \left|2^{l} \sigma_{2^{l}}\right|^{2}\right)^{q/2}\right)^{1/q} \\ &\sim \left(\sum_{i=1}^{N} 2^{i} \left(2^{i} \sigma_{2^{i}}\right)^{q/2}\right)^{1/q} \\ &\sim \left(\sum_{k=1}^{n} k^{q/2} \sigma_{k}^{q/2}\right)^{1/q}. \end{split}$$

Given an arbitrary factorization $D_{\sigma} = S_n R_n$, $R_n : l_2^n \to l_2$, $S_n : l_2 \to l_1^n$ of D_{σ} , consider the composition of D_{σ} with the inclusion map $I_n : l_1^n \to l_2^n$ which has 2-summing norm bounded independent of n. Hence, again with 1/s = 1/q + 1/2

(9)
$$\|\sigma\|_{s} = \sigma_{s}(I_{n}D_{\sigma}: l_{2}^{n} \rightarrow l_{2}^{n}) \leq \sigma_{q}(R_{n}: l_{2}^{n} \rightarrow l_{2}^{n})\sigma_{2}(I_{n}S_{n}: l_{2}^{n} \rightarrow l_{2}^{n})$$
$$= \sigma_{q}(R_{n})\pi_{2}(I_{n}S_{n}) \leq K_{G}\sigma_{q}(R_{n})\|S_{n}\|.$$

It is easy to see that there are sequences σ such that

$$\|\sigma\|_{s} \ge c_1(\ln(n+1))^{1/2}\|\sigma\|_{s,a}$$

Therefore (8) and (9) imply that there are diagonal maps $T_n = D_\sigma: l_2^n \to l_1^n$ with

$$\sigma_{q}(R_{n}) \|S_{n}\| \ge K_{G}^{-1} \|\sigma\|_{s} \ge c_{2} (\ln(n+1))^{1/2} \|\sigma\|_{s,q}$$
$$\ge c_{3} (\ln(n+1))^{1/2} \pi_{q,2}(D_{\sigma})$$

for any factorization $T_n = S_n R_n$ of the above form.

Added in proof. Denoting the Rademacher type p and cotype q constants by $\tilde{K}^{(p,n)}(X)$ and $\tilde{K}_{(q,n)}(X)$, one has for n-dimensional spaces $X: \tilde{K}^{(p)}(X) \le c_p \tilde{K}^{(p,n)}(X)$ since the Gaussian and Rademacher type p constants are equivalent. Moreover, L. Tzafriri and the author have shown $\tilde{K}_{(q)}(X) \le c_q \tilde{K}_{(q,n)}(X) \sqrt{\log(\tilde{K}_{(q,n)}(X)+1)}$.

REFERENCES

- 1. D. J. H. Garling and Y. Gordon, Relations between some constants associated with finite dimensional Banach spaces, Israel J. Math. 9 (1971), 346-361.
 - 2. T. Holmstedt, Interpolation of quasinormal spaces, Math. Scand. 26 (1970), 177-199.

- 3. H. König, Interpolation of operator ideals with an application to eigenvalue distribution problems, Math. Ann. 233 (1978), 35-48.
- 4. D. R. Lewis, The dimensions of complemented hilbertian subspaces of uniformly convex Banach lattices, to appear.
 - 5. A. Pietsch, Factorization theorems for some scales of operator ideals, to appear in Math. Nachr.
- 6. N. Tomczak-Jaegermann, Computing 2-summing norm with few vectors, Ark. Math. 17 (1979), 273-277.
 - 7. N. Tomczak-Jaegermann, in preparation.

Institut für Angewandte Mathematik Universität Bonn Wegelerstr. 6 53 Bonn, W. Germany